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bending of light, and precession of the perihelion of Mercury. We predict that 
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1: INTRODUCTION 

Connecting quantum mechanics with relativity theory has turned out to be 

difficult. We might even call it’ the “presenting problem” of 20th Century physics. 

A way to meet the problem is to use a finite and discrete constructive theory[1-31 

based on McGoveran’s orcleri,rg operator calculus and the combinatorial hierarchy 

of Amson, Bastin, Kilmister and Parker-Rhodes. Following this program has led to 

a successful deduction of the Sommerfeld formula for the fine structure of hydrogen 

and a correlated calculation (!!) of the fine structure constant that is in agreement 

with experiment to seven significant (decimal) figures. We concluded that it might 

be worth while to try to calculate the solar red shift, the deflection of light by the 

sun, and the precession of the perihelion position of the orbit of Mercury using the 

same theory. This line of thought led to a new prediction of an effect that might 

be observed in macroscopic orbits of two isolated electrostatically charged systems. 

-The combinatory hierarchy (3,10,137, 21z7 + 136) already suggests that the 

.scale-constants of physics might be the result of asking how many cases can occur 

when we count (measure?) without imposing prior restrictions. The suggestive 

numerical “coincidences” EC/e2 z 137 and 1.7 x 1O38 N hc/Gmi E 2ra7 + 136 and 

the standard comiection fic/Gmi = (Mpl,nCk/mp)2 indicate that the theory we - 

are talking about, if it works, unifies electroma.gnetism with gravitation. Since the 
.-. - 

theory as so far developed starts from standard “mass-length-time” physics, it has 

no place for more than three “dimensional” scales. Because it is a fundavzental 

theory, once three unique identifications of how these scales enter the theory have 

been made all numbers in the theory are dimensionless ratios and must be calculated 

rather than taken from experiment. Hence, having identified the limiting velocity 

and the constant of action at very early stages in the construction, there is no 

place for a difference between “gravitational” and “inertial” mass; we do not have 

to postulate the “equivalence principle”. Our theory is “born unified” both with 
- 
respect to electromagnetism and gravitation and with respect to gravitation and 

inertia. 
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Given our unified theory the three classical tests of general relativity (solar red 

shift, solar deIlection of light, Mercury perihelion shift) Can be arrived at by simple 

heuristic arguments, which we present in the concluding section. One just com- 

plaint about these heuristic arguments is that we have mixed apples and oranges 

(a.nd other more dubious fruits garnered from the tree of knowledge) in such a way 

as to lead to fruit salad. This sort of thing went on for a long time while quantum 

mechanics was being developed. One early practitioner of quantum mechanics in 

Copenhagen, who kept an iron horse shoe nailed over his (kitchen) door “to keep 

out the evil spirits” justified his practice by the remark “You don’t have to believe 

in it for it to work.” Perhaps we are still at that stage in the new theory. We 

hope in what follows to change your mind about our own practice. We try to do so 

by presenting a reasonably systematic development of the portions of our theory 

which bear most directly on the the specific problems adressed in this paper before 

presentingour way of looking at the three traditional tests of general relativity. 

2. METHODOLOGY 

-The title of this conference -- “Physical Interpretations of Relativity The- 

ory”- was interpreted in various ways by the participants. Before presenting our 

calculations, we explain our own methodology. For us the practice [41 of physics 

when using McGoveran’s modeling metl~odology[51 starts with a. rough agreement 

a.s to what we are trying to model and how we can come to a.gree about success 

or failure in this enterprise. Such agreement is a,lways hard to achieve without 

invoking arbitrary exclusions, or preferably enga,ging in several recursive passes 

through the steps mentioned below. A succeeding step is to formulate an unin- 

terpreted but self consistent ~ep~e.sentatio& frumewoJ; (R-frame) - for us this 

is h!IcGoveran’s ordering operator calculus 151; Cefwert141 would call formulating a 

represent,ational framework the practice of sylztax. These steps are incomplete for 

-any problem, or clutch of problems, until one provides &es of correspondence be- 

tween the practice and the representational framework- Gefwert would c.all this 
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practicing semantics- which-satisfy the practitioners or lead them to abandon or 

modify the enterprise. For physics these rules of correspondence must obviously 

include the specification of relevant labora.tory experiments referred to commonly 

understood and accepted dimensional standards and practical laboratory proce- 

dures (meter, kilogram, second, or any thee dimensionally independent standards 

uniquely related to them) and agreement with experiment up to the ambiguities 

currently considered acceptable. 

We part company with the thrust of the conference in two fundamental ways. 

We see the presenting problem of twentieth century physics as the reconciliation 

between quantum mechanics (discrete, global yet indivisible events measured by 

the quantum of action) and the implications of the limiting velocity for cnusal 

communication from which most treatments of relativity theory start. The second 

way in which we go outside most contemporary theoretical physics and mathemat- 

ics, and not just outside the presuppositions of ma,ny participants here, is that 

we abandon the continuum from the outset by insisting that our theory be finite, 

-discrete, finitely computable, contain absolut,e non-uniqueness, and be strictly con- 

structive. In fact we see the source of many of the “paradoxes” of contemporary 

physics (and mathematics) as arising from trying to imbed quantum events (finite 

algorithms) in a structure which is taken a priori to be continuous; there is no 

physical procedure which can measure an “infinitesimal” or a,n “infinity” (no finite 

construction of the continuum). 

3. LIMITING VELOCITY 

Paradoxically, by abandoning the continuum we find a richer structure than 

that available in the valid portions of continuum theories. Take the question of the 

“limiting velocity”, which has to be inserted in current theories as a brute fact or 

“just so story” rather than derived. Quoting from Ref. 3: 
- 

“In any finite a,nd discrete theory such as ours any question as to whether a 

finite ensemble has a. specific attribute can be answered “NO” or “YES”. Thus, 



with respect to any particular attribute and a well defined (strictly constructive) 

computational procedure, we can define an attribute distance relative to some refer- 

ence ensemble by the number of computational steps it ta.kes to bring the ensemble 

into local isomorphism with the reference ensemble. If we call the number of steps 

which increase the distance I and the number of steps which decrease the distance 

D, the attribute distance is I - D. If we take as our unit of time the computational 

step, this gives us the attribute velocity a.s B, which is obviously bounded by f 1. 

[Note that] I + D 1 las to be greater than zero in a discrete and finite theory. Thus 

any a,ttribute and any computational procedure specify a limiting velocit,y. 

“If we use such a theory to model physics, we must specify which at,tributes 

in the theory are to correspond to t,hose physica. attributes which specify a phys- 

ical object. In general these will specify different lirniting velocities. Clearly the 

transmission of causal (i.e. physically effective) information between two physical 

objects will be limited by the minimum of these maximum velocities and can be 

identified with c, the physical limiting velocity....” [simply because the specification 

of ti physical object requires the specification of more attributes than any partial 

list -contains] 

4.3+1 SPACE-TIME 

The casual wa.y in which we have introduced dichotomous choice tends to con- 

ceal the implications. In appropriate context any sequence of questions raised in the 

theory can be mapped onto ordered strings of two symbols (eg bit strings contain- 

ing only O’s and l’s). In the absence of further information, each string represents 

a sequence of Bernoulli trials with 0 and 1 representing the two possibilities. This 

has a.11 extremely important2 consequence, which we call McGoveran’s Theorem: 

- “The upper bound on the global d-dimensionality of a d-space of cardinality IV 

with a discrete, finite and homogeneous distance function is 3 for sufficiently large 

N.” (Ref. 5, Theorem 13, pp 59-60). 



The argument can be sket&ed as follows. As has been noted by Fellerj” if we 

have D i~depe,~dent.sequences of Bernoulli trials, the probability that after n trials 

we will have accumulated the sa.me number (k) of l’s is pu( 72) = ( T&)C&~( ;)D. 

He then shows that the probability that this situation will repeat N times is strictly 

bounded by 

-1. Consequently for D = 2,3, where pD(n) < 12 2, n-l, such repetitions can keep on 

occurring with finite probability, but for four or more independent sequences, this 

probability is strictly bounded by zero in the sense of the law of large numbers. 

McGovera.r~[51 uses finite attributes, which can alwa.ys be mapped onto ordered 

strings of zeros and ones, as the starting point for his ordering operator calculus. 

In order to introduce the concept of dijnensionality into this space, he notes that 

we need some metric criterion that does not in any way distinguish one dimension 

from another. (I n a continuum theory, we would call this the property of “ho- 

mogeneity and isotropy”; we need it in our theory for the same reason Einstein 

did in his development of special relativity.) McGoveran discovered that by inter- 

preting the coincidences n = 1,2, . . . , N in Feller’s construction as “metric marks” 

the metric space so constructed has precisely the discrete property corresponding 

to “homogeneity and isotropy” as just defined. Consequently Feller’s result shows 

that in any finite and discrete theory, the number of independent “homogeneous 

and isotropic” dimensions is bounded by three! If we start from a larger number 

of independent dimensions using any discrete and finite genera,ting process for the 

attribute ensembles, we find that the metric will, for la.rge numbers, cont.inue to 

apply to only three of them, and that what may have looked like another dimension 

is not; the probability of generating the next “metric” mark in any of the others 

(let alone all of them) is strictly bounded by l/Nn~,lx! 

Of course the argument depends on the theory containing a universal order- 

ing operator which is isomorphic to the ordinal integers. Further, since we know 

empirica,lly tlia,t “elementary particles” a.re chiral, we will need three rather than 



two “spatial” dimensions. Thus ally discrete and finite theory such as ours when 

a.pplied to physics must be globally described by three dimensions and a monoton- 

ically increasing order pa,ra,meter. Consequently we are justified in constructing a 

“rule of correspondence” for our theory which connects the large number properties 

of our R-frame to laboratory (E-fra,me) 3 + 1 space-time. 

5. THE COMBINATOR.IAL HEIRARCHY 

In the ordering operator calculus [‘I the norm or resultant of two independent 

(“orthogonal”) quant,ities can only be calculated when a.11 three numbers satisfy the 

restrictions (a - b)’ 5 c2 5 (a + b)“, J .l c ‘c ic on a, b, c. The specific model used here 

is based on labeled bit strings (4!)~11(~)~~~ where (x& = (...,br, ...)Y; bp E O,l,i = 

1) 2) . . . ) y . The first part of the string is called the label and the -second part the 

conten,t. Strings combine under disc~inaination (exclusive or, @,...) according to 

(CIXJ)~ = (..., b;+2br, . . .)n and under string conca.tenation according to ( x)~ I[( u))~ = 

(x,w)~+~ where bj”‘” = bf,i,j = 1,2 ,.., y; = br,i = 1,2 ,.., 2,j = i + y. We 

- defini the null sthg (0),,L by by = 0, i E 1,2, . . . . 72 and the anti-null string (l)% by 

b; = 1, i E 1,2, . . . . n. Since the operation $ is only defined for strings of the same 

length we can usually omit the subscript 7~ without ambiguity. The definition of 

discrimination implies that 

(ua) = (0); (ab) = (ba); ((ub)c) = (u(bc)) E (abc) 

and so on. 

The importance of closure under this opera,tion was recognized by John Amson. 

It rests on the obvious fact that (u(ub)) = (b) and so on. We say that any finite 

a.nd denumerable collection of strings, where a.ll strings in the collection have a. 

distinct ta.g ;,j, k: ,.., a,re discriminately independent iff 

- (i) # (0) : (ij) # (O), (ijk) # (0) ,... (ijk...) # (0) 

We define a discriminately closed subset of non-null strings {(u),(b), . ..} as the 



set with a single non-null string as -member or by the requirement that any two 

different strings in the subset give another member of the subset on discrimination. 

Then two discriminately independent strings generate three discriminately closed 

subsets, namely 

U4>’ {(b)L U4’v4? (4 

Three discrim .inately independent strings give seven discriminately closed subsets, 

namely 

WL wJ)h UC>> 

In fact x discriminately independent strings generate 2” - 1 discriminately closed 

_ subsets because this is simply the number of ways one can take z distinct things 

on@, two, three ,..., (2: at a time. Hence we can generate the sequence, known as 

the. combinatorial l~ie~~~chy~~~, (2 * 2” - 1 = 3), (3 * 23 - 1 = 7) [3 + 7 = 

10],(7 + 27 - 1 = 127) [lo + 127 = 137],(127 + 21Z7 - 1 21 1.7 x 103s) - 

[3,10,137, 2127 + 136 N 1.7 x 1O38] in suspiciously accurate agreement with the 

“‘scale constants” of physics. The discovery of the combinatorial hierarchy was 

made by Parker-Rhodes in 1961”‘. The real problem is to find some “stop rule” 

that terminates the construction. 

The original stop rule was due to Parker-Rhodes. He saw that if the discrim- 

inately closed subsets at one level, treated as sets of vectors, could be mapped 

by non-singular (so as not to map onto zero) squa.re matrices having uniquely 

those vectors as eigenvectors, and if these mapping matrices were themselves dis- 

criminately independent, they could be rea.rranged as vectors and used as a basis 

for the next level. In this way the first sequence is mapped by the second se- 

quence (2 =% 2” = 4), (4 + 4” = 16), (16 + 16” = 256), (256 + 2562). The 
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process terminates because there are -only 256” = 65,536 = 6.5536 x lo4 d.i. 

matrices available to map the fourth level, which are many too few to map the 
2137 _ 1 = 1.7016... x 1O38 DCsS’s of that level. By now there are many ways to 

[S-13] achieve and look at this construction and its termination. 

6. PROGR.AM UNIVERSE 

In order to generate a universe of strings which grows, sequentially, in either 

number (SU) or length (N~I) Mike Manthey and HPN created progl’um universe iI41 . 

The program is initiated by the arbitra,ry choice of two distinct bits, which become 

the first two strings in the uuiverse. Entering the main routine at PICK, we 

choose two strings (i) and (j) and discriminate them. Whenever the two strings 

picked are identical, (ij) = (0)~~ and we go to TICK. TICK concatenates a single 

bit, arbitrarily chosen for each string, to the growing end, notes the increase in 

string length, and the program returns to PICK. The alternative route, which 

occurs when discrimination generates a non-null string, simply ADJOINS the newly 

created string to the universe, notes the increase in SU, and the program returns 

to PICK. 

The method h/lanthey a,nd HPN used to “construct” the hierarchy was t,o 

demonstrate explicitly that any run of PROGRAM UNIVERSE contained all we 

needed to extract some representation of the hierarchy and the label content scheme 

from the computer memory without affecting the running of the program. The ob- 

vious intervention point exists where a new string is generated, i.e. at ADJOIN. 

The subtlety here is that if we assign the tag i to the string U[i] as a pointer to 

the spot in memory where that string is stored, this pointer can be left unaltered 

from then on. It is of course simply the integer value of SU + 1 at the “time” in 

the simulation [sequential step in the execution of that run of the program] when 

that memory slot, wa.s first needed. Of course we must take ca,re in setting up the 

-memory that nil memory slots are of length N,,, > Nu, i.e. can accommodate 

the longest string we can encounter during the (necessarily finite) time our budget 
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will allow us to run the program. Then, each time the program TICKS, , the bits 

which were present at tl1a.t point in the sequential execution of the program when 

the slot [i] was first assigned will rema.in unaltered; only the growing head of the 

string will change. Thus if the’ strings i,j, Ic.... tagged by these slots are discrimi- 

nately independent a.t the time when the latest, one is assigned, they will remain 

discriminately independent from then on. 

. 

Once this is understood the coding Manthey and HPN gave for our labeling 

routine should be easy to follow. We take the first two discriminately independent 

strings and call these the basis vectors for Ze,uel 1. The next vector which is dis- 

criminately independent of these two starts the basis array for Ze,ueE 2, which closes 

when we have 3 basis vectors discriminately independent of each other and of the 

basis for level 1, and so on until we have found exactly 2+3+ 7+ 127 discriminately 

independent strings., The string length when this happens is then the label length, 

L; it remains fixed from then on. During this part of the construction we may have 

encountered strings which were not discriminately independent of the others, which 

- up to now we could safely ignore. Now we make one mammoth search through the 

memory and assign each of these strings to one of the four levels of the hierarchy; 

it is easy to see that this assignment (if made sequentially passing through level 1 

to level 4) has to be unique. 

From now on when the program generates a new string, we look at the first 

L bits and see if they correspond to a.ny la.bel already in memory. If so we assign 

the content string to the content ensenzble carrying that label. If the new string 

also has a new label, we simply find (by upward sequential search as before) wha,t 

level of the hierarchy it belongs to and start a new labeled content ensemble. 

Because of discriminate closure, the program must eventually generate 2127 + 136 

distinct labels, which can be organized into the four levels of the hierarchy. Once 

this happens, the label set cannot change, and the parameters i for these labels 

will retain an invariant significa,nce no matter how long the program continues to 

-TICK. It is tl lis invariance which will later provide us with the formal justification 

for assigning an invariant, mass parameter to each string. We emphasize once 
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more that what specific representatidn i>f the hierarchy we generate in this way is 

irrelevant; any “run” of PROGRAM UNIVERSE will be good enough for us. 

To summarize, the label strings ([)L of length L bits close under discrimination 

to form some representation of the four levels of the combinutoriad hierarchy with 

3,7,127 and 2127 - 1 elements, which terminates because of the mapping onto the 

sequence 4,16,256,256”. This implies that 139 2 L < 256. In the absence of 

further information, the content string will be any one of the 2n possible strings of 

length n. 

7. LORENTZ TRANSFORMATIONS 

Physical interpretation of the- labels, based on the demonstration of conser- 

vation laws in bit string events [‘I, identifies level 1 with chiral neutrinos, level 2 

with electrons, positrons and gamma rays, and level 3 with two quarks in a, color 

octet and their associa.ted gluons. This pa.ttern repeats at level 4, generating up 

-to 16 generations of quarks and leptons which couple to low energy phenomena 

with rapidly a,nd monotonically decreasing probability. The identification of the 

coulomb interaction as occurring with probability l/137 (because one label can 

represent only one of the 22 -, 1 + 23 - 1 + 27 - 1 = 137 labels generated when 

level 3 closes) for charged leptons and the appropriate l/3 or 2/3 factor for quarks 

is preserved across generations. Since we are concerned in what follows with hy- 

drogen, the unification of the coulomb interaction between electron a.nd proton 

( i.e. a uucl bound state) in the first quark-lepton generation is all we will need 

beyond the basic combinatorial structure of the labels. We can anticipate correc- 

tions due to weak-electromagnetic unification to occur with probability of order 

rr$fiG~ Isin’Opveak - iI, which is beyond the accuracy of the calculation made 

here. 

The physical interpretation of the content strings was originally made in terms - 
of a “random walk” between “events” using the ordinal integral positions of the 

bits along the string to specify invariant sequence. Counting.the number of l’s in 
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the string as k (and hence the number of O’s as 72 - Jz), and taking as reference 

string a.ny string with 2b = n, the attribute distance of a,ny string, defined as 

the number of steps awa.y from minus the number of steps toward the reference 

string is 2k - 72, consistent with our general discussion given above. Introducing 

physical (i.e., mass, length, time) dimensions by an invariant length A, this distance 

X/X = 2k - n, since each step is executed at the limiting velocity c, et/X = n. 

We define events by the restriction that (abc) = (0), or (abed) = (0). We 

consider two sequential events separated by 72 steps connecting two strings with 

the same label. Take as the origin (20, to) = (0,O) and call the event of interest to 

us (x, t). Then the average velocity between the two events was /?c = (%-1)~. The 

invariant interval connecting the events is s2/X” = (St2 - x2)/X” = 4k(n - k) = 

(1 - /?2)~22. Going to light cone coordinates, we can make a distinction between two 

factors of the invariant interval by defining d+ = 2k = (1 + /3)n, d- = 2(n - k) = 

(1 - ,/?)n; we see that the transforma.tion k’ = pk, n’ - k’ = p-l(n - k) leaves s2 

invariant. Since d+/d- = (1 + p)/(l - p), th e t ransformation to the rest system 

- defined by d’+/d’_ = 1 is given by p2 = (1 - p)/(l + /3), from which the Lorentz 
i : transformations for z and ct follow immediately. 

The invariance of the label string under our generation procedure, and the . 

conservation laws for quantum numbers which participate in events, allows us to 

define a dimensional invariant for each label, more specific than the global limiting 
-- - velocity c. In the discussion above, we used a space-time language, and referred 

to an invariant length A. But, in current particle physics, velocity (in units of the 

limiting velocity) has the same value in energy-momentum space as in space-time. 

Hence, we could just as well have ta.ken our invariant connected to the label as the 

invariant maas-energy mc’ &her than A. Then we can understand quantization 

either as taking the inva.riaat length X = h/nzc or as E = hv with the invariant 

frequency v = mc’/h; this is a distinction without a difference. Since each step 

is executed at the limiting veloc.ity, a labeled history which starts at rest [2k = n] 

acquires’s momentum mc by taking the first step, and must, take a second step to 

return to rest. Hence it makes a circuit which encloses an area h in phase space; for 
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longer circuits this will be IzFG. We hare extended Bohr-Sommerfeld yuantization 

to a. relativistic free particle. At each step the value of position and velocit,y 

depend on the sequence and the sense of the circuit; this insures that position and 

momentum do not commute. It is this fact which allows us to ascribe a common 

origin to relativity and quantum mechanics in any finite, discrete, constructive 

theory. 

The fact that we have Bohr-Sommerfeld yua.ntization in a relativistic quantum 

theory encoura.ged us to tackle the fine structure problem - because this wa.s all 

that was available to Sommerfeld! Since his result is valid up to corrections of 

order a3 (eg the La,mh shift) using the accepted non-integral value for l/cy, this 

meaalt we couldn’t just use the first otder value of 137. The beanty of Dh’IcG’s 

approa.ch 1151 * 1s that it solves both problems at once. 

8. FINE STRUCTURE OF HYDROGEN 

!Ve have seen that for a particle at rest (5% = n), there is a zitterbewegvng 

with momentum kmc which encloses an area of some integral multiple of h in 

phase space; hence Bohr-Sommerfeld quantization for a relativistic free particle. 

This periodicity is a special case of the periodicity for any finite (average) velocity 

p = 2~ - 1 since k = NIQ, n = Nlco defines a periodicity N which leaves the 
n0 

velocity invariant. This defines the coherence length h/p, and allows events to 

occur only at positions an integral number of deBroglie wavelengths apart. 

To extend this analysis to a coulomb bound sta,te with system mass ,LL = s 

we take from our interpretation of the combinatorial hierarchy the fact that only 

1 in 137 of the events will be a coulomb event, the others averaging out in the first 

stage of the analysis; in other words 

137N~ steps = 1 coulomb event 

-This means that we now ha.ve two frequencies (in dimensional units of pc”/1~), the 

zitterbeweguy frequency corresponding to the rest mass, which we take to be unity, 
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and the coulon~b frequency 1/‘237N~. Since these two motions are incoherent, the 

frequencies must be a,dded in quadrature subject to the constraint on the energy 

E defining a bound state that in t.he rest system E/p2 < 1. Hence, (E/~c~)~[l + 

(1/137N~)‘] = 1. In the language of the ordering operator calculus, this is simply 

the normaliza.tion of the metric corresponding to the energy attribute under the 

appropriate constraint. If we take e”/fi,c = l/137, this is just the relativistic Bohr 

. formula’161. 

In either the non-relativistic Bohr theory or the non-relativistic Schroedinger 

equation, the coulomb problem suffers from a degeneracy between the principle 

quantum number NB and the orbital angular momentum quantum number !, be- 

cause the energy depends only on the principle quantum number, or, in the corre- 

spondence limit, on the semi-major axis of the ellipse. Thinking semi-classically, 

Bollr[lG] and S ommerfeld saw that the relativistic mass increase, which is most 

important at perihelion in elliptical orbits, would break this degeneracy, and Som- 

merfeld1’71 computed the effect. Dirac”” arrived at the sa,me formula in what 

- appears to be a very different, way, but one which also depends on lifting the de- 

generacy between two integers. For both Sommerfeld and Dirac the problem was, 

in a sense, easier than for us because in conventional theories irrational, transcen- 

dental, “empirical”, . . . numbe,rs live in a different world than the finite integers. 

Their methodology allows these non-constructive entities to enter the argument at 

appropriate points. We must face a harder problem in our theory. 

Let j be an integer, and let suc,cessive values of s differ by integers so that 

s = n + so. Although so is ra,tional, it lifts the degeneracy by being non-integral. If 

J’ and so differed only by a. rational fraction resealing would restore the degeneracy. 

Hence the 137 coulomb resealing from the combinatorial hierarchy, or any other 

single integral resca.ling, is not enough to meet the problem posed. If we combine 

the two independent integer (except for so) counts by starting them off as close 

as we can while maintaining the distinction (i.e. “synchronize” the counting), we 
- 

can require that so be the value closest to j that s can have. This can happen 

in two distinct ways. There is no wa.y in the problem posed that we can directly 
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observe the “synchronization’‘-of the-two periods, and both possibilities correspond 

to “coulomb events”. Vie can either assume that the synchronization corresponds 

to 137j& + 1374 (coul;;;Jeuent) = 1 + c or to 137j (coul::;:vent) - 
P 

137so (coulo:IElr .Seoent) = 1 - 6 where 6 is some rational fraction less than unity. 

Here we must use care because these two equations have different meanings and 

camlot simply be interpreted as if they represented numerical quantities which can 

be combined by linear operations. As we saw in our derivation of the relativistic 

Bohr formula, independent frequencies must be combined in quadrature, so we 

form the product defining the squares: 137’j” - 137”~~ - 2 - 1 - c2. Note that the 

two factors of this equ&tion are the conditions on j and s stated above. With 

j fixed, the value of s for which both hold is so. Since j is to be the norm to 

which we refer, we form j2 - .si 5 (1 - ~“)/137” = a2. Taking s .= 12 + so a.s the 

appropria.te mmlber to define internal frequency for the bound state, we can follow 

our discussion above for the single frequency case and conclude that 

(E/,Lc”)2[1 + n2/(12 + @-=2,“] = 1 

This is precisely the Sommerfeld formula, provided we can interpret u2 as a2 (to 

order a3 or a3) and know how to take the square root in our discrete theory. 

In order to understand how we can have two independent rational frequencies 

in our theory of this problem, we have to go back to where the 137 came from. 

In the absence of other information, the 3 + 7 + 127 labels have to be generat,ed 

for each of the two labeled strings which a,re coupled by the two coulomb events 

that (minima.lly) allow a bound state to be specified. But, if the end result is to 

be dist,inct, the way this is done the first time must be distinct from the way it 

happens the second time. For both events to be coulomb, the second time through 

the first two levels must have closed, so only 1 in 127 events would correspond to an 

indistinguishable repetition of the first process. Hence the population from which a 

coulomb bound state event is selected is reduced by 1 in 127 compared to statistical 

independence; this is standa.rd statistics for sampling without replacement. Rut 
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for two spin l/2 particles (electron-and proton) only 1 in 16 possibilities out of 

the spin, particle-antiparticle, dichotomies will also coincide; the null case camlot 

occur in our scheme, leaving only 1 in 15 x 127 cases to be excluded. We conclude 

that the expectation of the “second” event being degenerate with the “first” event 

is just l/(15 x 127), which defines 2~ = & as the interval around unity by 

which 1372si can differ from 137”j”. In the physical situa.tion however, we a.re 

only interested in the portion that occurs within the period for j, namely 1 - E. 

Therefore the number of steps that are neither part of j or so is E = & . &. 

:.. i. 

This two factor a,nalysis of the way t relates to the normalization equation 

j”--.si = a2 ra,ises another subtle point. When experimentalists use the Sommerfeld 

formula and the fine structure spectrum of hydrogen to evaluate Q, they fit their 

results to a2 and then take the square root. In order for this to correspond to the 

calculation we have made, we must take u2 = (1 - ~)~/137~, and we expect them to 

find that k = 1-13: = 137.0359674... in comparison to the accepted empirical 
9oxla7 

valueL1” 137.035963( 15). 

9. THE THREE TESTS OF GENERAL RELATIVITY 

Our interpretation of the combinatorial hierarchy specifies the gra.vitational 

coupling as an elesnesrtary particle coupling tic/Gmz N 1.7 x 1O38 analagous to 

h/e” = 137 rather than as a coupling to ponderable ma.sses. Further, the content 

string corresponding to a massless quantum is simply the anti-nul1 string (l)n 

corresponding to t,he forward light cone, or the null string (0), corresponding to 

the backward light cone. This content string provides no information about the 

energy or momentum of the quantum. The wa,y we meet this problem is similar to 

the context dependewt approach of Wheeler and Feynman. We do not think of a 

quantum as “something traveling” but rather as a. conceptua.1 carrier of momentum 

and angular momentum between two earlier and later sets of particle motions. As 

-Wheeler and Feynman would put it, all radiation is ultimately absorbed; radiation 

can only be discussed in terms of the sources and sinks (“action at a distance”). 

1G 



Once this is understood, we rea,lize that the effect of gravitation for the problerns 

at hand is to be measured by the changes in &momentum of two distant objects. 

This means that we will always be measuring ma.ss ratios, and the fact that our 

gravitational coupling comes to us in units of the proton mass is no barrier to 

extending it to other objects and the correlated motions of their internal particulate 

emitters and absorbers of gravitons. Because of the weakness of gravitationa, effects 

in the systems of interest in this paper, we can simply sum these effects. 

Once this is understood we can start our treatment of a gravitational system 

containing two significant masses 772 = ~2’)12~, A/r = N?71p, p = &mP by following 

our treatment of the Bohr at#om wit.11 the ba.sic replacement 

(21a7 + 136)NGsteps = 1 newtoniun event 

From this quantum equation we can deduce the binding energy of two “Newtonian 

mass points” when 

nN << (2127 + 136)N~ 

to the same accuracy as we can deduce the binding energy of two charged particles 

wit,11 Q = ze, Q = Ze when ZZ << 137Nr;r. The deduction of the solar red shift 

is then as trivial as it usually is in theories that combine special relativity with 

. quantum mechanics. E = hu quantization - which we derived above - and the 

conservation laws give the usual result, once we recognize that the absorption of a, 

photon emitted by the sun somewhere nea,r the earth’s orbit (neglecting the local 

gravitational effects clue to the earthand solar radius compared to the distance 

from the sun to the ea,rt.h) must take a.ccount of the difference in energy between 

the absorbing systems a,nd the emitting systems at the surface of the sun. 

The deflection of light by the sun is only slightly more subtle. *4lthough the 

details are not yet worked out, macroscopic gra.vitational (or Rutherford) scattering 

vi11 conliect to our quantum theory in the same wa,y (to the accuracy of interest 

here) that our treatment of the Bohr atom connects to the “correspondence limit”. 
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Hence the “special rela.tivistic trajectory” of light passing by the sun (i.e. the 

deflection due to the In = E/c” attraction of the photon) will predict only half the 

observed effect. In this case we do not have a massive system in the region where 

the “interaction” occurs, and, until a more general treatment of the detection 

systems is carried through, must rely on theory to calculate the “lowest order” 

interaction between a graviton and a photon. In contrast to the red shift, which 

can be calculated from energetic considerations independent of spin, the photon 

passing the sun will have one of two well defined helicities relative to its direction of 

motion. The “newtonian” graviton (which provides the E = nzc’ special relativistic 

deflection) ignores this but the two helical gravitons cannot. The correct helicity 

can flip the photon’s spin, but the other camlot. Hence, whatever the helicity of 

the photon which passes the sun, including spin only doubles the special relativistic 

spin independent deflection, in agreement with experiment. 

The precession of the perihelion of Mercury involves massive systems at both 

the emission and t,he absorption points, so we have to use more care in talking 

-about the helicity state of the gravitons. As is well known[201 the Sommerfeld 

calculation (in our language, the “newtonian term”.) predicts only one sixth of 

the-observed effect. In contrast to the deflection of light, where we had to deal with 

a “field-field” (photon-graviton) interaction, we talk here about two macroscopic 

bodies with a well defined orbit in 3-space. Relative to this situation the many 

- spin two gravitons whic,h eventually produce the perihelion shift can have five 

orientations and not just the two helicity states referred to their own “direction 

of motion”. Consequently, in a,ddition to the “newtonian” term we will have five 

equally probable contributions, and we can anticipate six times the Sommerfeld 

precession, in agreement with observation. 

Pursuing this line of thought, it is interesting t.o contra.st the situation in hy- 

drogen with what would happen if we had a ~~ncroscopic elect.romagnetic elliptical 

orbit (eg in a space st,ation) and 3-dimensional macroscopic measurements of the 

perihelion shift. It would seem to follow that, three orientations of the spin 1 pho- 

tons should contribute, each with the sa,me probability as the coulomb term, and 
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hence lead to a prediction four-times larger that the semi-classical model prediction 

on which the Sommerfeld formula is based. 
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